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Using a combination of modeling and tunneling spectroscopy, we investigate how electrostatic potential
fluctuations generated by randomly distributed ionized donors close to a quantum well can produce deep and
strongly confined quantum-dot-like potential minima with a rich spectrum of zero-dimensional electronic
energy levels. We consider different types of random distribution of donors and how the electronic properties
can be controlled and investigated in appropriately designed double barrier resonant tunneling diodes.
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I. INTRODUCTION

A quantum dot �QD� is a nanostructure in which an elec-
tron is confined in all three spatial directions. This results in
an atomiclike spectrum of discrete energy levels. A confine-
ment potential deep enough to accommodate several widely
spaced energy levels1 can be achieved in semiconductor
structures by a variety of techniques including Stranski-
Krastanow self-assembly,1–4 colloidal synthesis,5,6 nanoscale
patterning or etching,7,8 monolayer fluctuations of thin quan-
tum well layers,9 or electrostatic confinement in gated sub-
micron transistors with planar or multilayer geometries.10,11

Recently, we demonstrated an alternative method of QD fab-
rication, by post-growth annealing of a functional semicon-
ductor device.12 For a narrow range of annealing conditions,
it is possible to diffuse doubly ionized manganese interstitial
donors �Mni

2+� out of a surface layer of ferromagnetic p-type
Ga1−xMnxAs into an underlying layer of undoped GaAs ad-
jacent to a quantum well �QW�. The random clustering of
Mni

2+ ions modifies the electrostatic potential within the well,
giving rise to a small number of deep potential-energy
minima, each of which can quantum-confine conduction
electrons on a length scale l0�10 nm. In this paper, we
develop a theoretical model to understand how these poten-
tial minima are formed and how the characteristic energy
level spacing of bound conduction electrons can be adjusted
by fine tuning of the semiconductor heterostructure design.
We compare the model calculations with our experimental
data and also discuss the relevance of our results to previous
reports of unexpected “growth-induced” quantum dot
potentials.13–15

II. SIMULATING THE POTENTIAL GENERATED BY
RANDOMLY DISTRIBUTED ELECTRICAL CHARGES

In this section we model the electrostatic potential profile
generated by randomly distributed ionized donors in the vi-
cinity of a quantum well. We consider three different distri-
butions shown schematically in Figs. 1�a�–1�c�: �i� Mni

2+ do-
nors, which have diffused along the growth axes, z, from a
layer of ferromagnetic Ga1−xMnxAs toward the well; �ii� a
uniform and random “charged slab” distribution �three-
dimensional doping�; and �iii� a single � layer of donors

�two-dimensional �2D� doping� close to the well.
The first distribution corresponds to the experimental situ-

ation recently described in Ref. 12. The device is a p-i-n
double barrier resonant diode �RTD� in which the p-type top
barrier is Ga1−xMnxAs with x=3%; see Fig. 1�d�. The
Ga1−xMnxAs layer is separated from the GaAs/AlAs quan-
tum well by a 10 nm spacer layer of undoped GaAs. When
the device is thermally annealed, the Mni

2+ ions diffuse to the
top surface layer and also into the GaAs spacer layer. The
diffusion of Mni

2+ can be described by a simple one-
dimensional model based on Fick’s law. In the low-diffusion
limit, the mean concentration, C, of Mni

2+ at a distance z
below the �GaMn�As/GaAs interface and after an annealing
time, tA, is given by

C�z,t� = Cserfc� z

2�DtA
� . �1�

Here Cs	5�1019 cm−3 is the concentration of Mni
2+ in the

Ga1−xMnxAs layer �for x=3%, �10% of Mn atoms occupy
interstitial positions�, D=D0 exp�−Q /kBTA� is the Mni

2+ dif-
fusion coefficient, D0=3�10−4 m2 /s, Q=1.5 eV is the ac-
tivation energy16 and TA is the annealing temperature.

We simulate numerically the distribution of Mni ions for
TA=150 °C, neglecting Coulomb interactions between them.
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FIG. 1. �Color online� Distributions of positively charged do-
nors close to a QW in a GaAs/AlAs p-i-n RTD. �a� Distribution for
diffusive charge. �b� A uniform and random “charged slab” distri-
bution. �c� A � layer of ionized donors.
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This is a reasonable approximation since the Mni density in
the GaAs spacer is relatively low, changing from
�1019 cm−3 at the �GaMn�As interface �i.e., a mean Mni
separation �5 nm and a Coulomb interaction energy less
than Q and kBTA� to effectively zero at the AlAs/GaAs inter-
face. Our simulated positions of individual Mni in the QW
plane �x ,y� are defined by random numbers corresponding to
“white noise” of uniform distribution, with the ion density
along the growth axis z given by C�z , t�. In this case, the
concentration of charge obeys Poissonian statistics and the
probability of finding a nanocluster with a number M of
Mni

2+ ions is given by PM = 
M�Me−
M� /M!.17 Here 
M�
=CVC is the average number of Mni

2+ donors within a cluster
of volume VC. Table I compares the number of clusters, Nc,
with M Mni

2+ ions in each cluster at a distance 8 nm from the
�GaMn�As/GaAs interface for VC	1000 nm3. In an area of
200 �m diameter, one can expect to find a small, but sig-
nificant, number of clusters of size �10 nm with 6–8 Mni

2+

ions in each of them, and a much larger number with, say,
3–5 ions. Note that this statistical result agrees with numeri-
cal simulations of Mni diffusion. The simulations involve
3�106 Mni

2+ ions occupying a volume of 5�5�d �m3,
where d is the distance from the �GaMn�As/GaAs interface
to the central plane of the QW. Figure 2�a� shows the result-
ing electronic potential energy UQW�x ,y� for d=20 nm in
the central area �0.3�0.3 �m2� of our simulation, over
which edge effects can be neglected. The potential-energy
contours in Fig. 2�a� reveal a complex landscape. This arises
from random spatial variations in the density profile of dif-
fused Mni with nanoscale regions �“clusters”� extending over
�10 nm, where the local density of Mni considerably ex-
ceeds the mean density at this value of d, typically by a
factor of 3–4.

The clusters giving rise to the deepest potential minima
contain typically up to �10 randomly placed Mni ions and
form in the GaAs layer just below the �GaMn�As layer. By
solving numerically the 2D Schrödinger equation of an elec-
tron in one of the minima using the effective-mass approxi-
mation �m�=0.067me for conduction electrons in the GaAs
QW� as a function of the magnetic field B parallel to the z
direction, we obtain the magnetospectrum shown in Fig.
2�d�. The rich energy level spectrum resembles the states of
the Fock-Darwin model for an electron in a 2D harmonic
potential in the presence of a magnetic field.12,18 It has been
shown previously that this model provides a reasonable ap-
proximation to the electronic states of circular QDs formed
by submicron lithography.11,19,20

Figures 2�a�–2�c� show the electronic potential energy
UQW�x ,y� of the same random distribution of ions for three
different values of d. A comparison of the results of numeri-
cal simulation summarized in Fig. 2 suggests a way of ad-
justing the density and typical depth and curvature of the
minima in UQW�x ,y�. For example, by reducing d from 20 to

10 nm, we can increase the number of potential minima and
obtain a larger value of the characteristic level spacing.

We have performed 98 simulations of the electrostatic po-
tential induced by different sets of randomly distributed ions
and found about 80 simulations with deep ��0.3 eV�
potential-energy minima and low-energy contours close to
elliptical. Many ��50%� of these dots have approximately
circular potentials with energy spectra similar to the Fock-
Darwin model. Deviations from exact circular symmetry are
evident from the lifting of the orbital degeneracy of the
2p-like and other excited state levels, see Figs. 2�d�–2�f�.
However, this splitting is usually smaller than that corre-
sponding to the principal quantum number; hence, in most
cases, orbital angular momentum is a “good” quantum num-

TABLE I. Average number of Mni clusters and corresponding number of Mni in each cluster for a mesa
of diameter D=200 �m.

Average number of Mni clusters, Nc 160000 6800 235 7 0.2 0.004 10−4 10−6

Number of Mni in each cluster, M 3 4 5 6 7 8 9 10

FIG. 2. �Color online� Numerical simulation of the electrostatic
potential created by randomly distributed nanoclusters of Mni ions
for �a� d=20 nm, �b� 15 nm, and �c� 10 nm. Parts �d�, �e�, and �f�
represent corresponding Fock-Darwin-type energy spectra of elec-
trons confined in the potential minima in the area indicated by a
square. In figure �f�, the three lowest energy states at low B are
labeled 1s and 2px,y.
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ber at moderate values of B��5 T�. This behavior is consis-
tent with the homogenous distribution of ions in the xy
plane; probabilistically there is no preferred direction in the
disposition of the ions. However, four quantum dots out of
the 80 obtained from our simulation have a cross-section,
which is approximated by elongated elliptical contours with
aspect ratio �0.4. An example of such confining potential
and the corresponding energy spectrum are shown in Figs.
3�a� and 3�b�. The spectra of the elongated QDs are very
different from the Fock-Darwin form. In particular, the split-
ting due to the lowered symmetry becomes comparable with
the level spacing associated with the principal quantum num-
ber and the orbital Zeeman splitting of the low-energy ex-
cited states is effectively quenched. A statistical analysis of
the shapes of the different quantum dots obtained from our
simulations is summarized in Fig. 3�c�, where we plot the
probability P of finding a quantum dot whose low-energy
potential contours can be approximated by an ellipse with
axis ratio �2 /�1 ��2��1�. Note how P drops rapidly as
�2 /�1 decreases from 1.

To understand how different types of random distributions
affect the form of the electrostatic potential, we performed
additional calculations with a uniform charged slab distribu-
tion �Fig. 1�b�� and a single � layer of double-ionized donors
close to a well �Fig. 1�c��. Similar numerical simulations of
the fluctuating electrostatic potential have been reported for
quantum wires made from �-modulation doped
heterostructures.21 Our simulations use the same coordinates
x ,y of ions as those for the calculations shown in Fig. 2.
However, for the case of the slab distribution the ions were
uniformly placed along z, over the 10 nm thickness of the
slab; for the �-layer distribution, the z coordinate of ions was
fixed. The results summarized in Fig. 4 indicate that the po-
tential generated by the random slab of charge and by the �
layer are qualitatively similar to those obtained for diffused
ions distributed along z. Thus, we conclude that the appear-
ance of deep potential minima resulting from clustering of
randomly distributed charges in the proximity of a quantum
well does not depend significantly on the distribution of ions
along z.

III. NATURE OF THE POTENTIAL GENERATED BY
RANDOMLY DISTRIBUTED CHARGES

We can gain further insight into the properties of the elec-
trostatic potential induced by randomly distributed charges
by considering the statistical characteristics of the potential.
Since the appearance and qualitative properties of the poten-
tial do not depend on the distribution along z, we use a sim-
plified analysis in which the potential arises from a large
number of point charges, q, distributed randomly on the
�x ,y� plane. We follow an approach similar to that used in
Ref. 22 to study charge-density fluctuations in metal-oxide-
semiconductor devices and insulated-gate field-effect transis-
tors. We consider n charged particles distributed among N
atomic cells with equal probability. In our experiment the
number of Mni ions is much smaller than the number of
atoms in the crystal; hence we consider only the case n	N.
In this limit, the distribution of charge across the plane obeys
Poissonian statistics and the corresponding electrostatic po-
tential 
�r ,z� created by such a distribution of charge is
given by

�2
�r,z�
�r2 +

�2
�r,z�
�z2 = −

q

4���0
�r���z� , �2�

where z=0 corresponds to the plane of charges, r=�x2+y2,
�r� represents a Poissonian white �uncorrelated� noise with
mean value and variance equal to n /N, � is the delta func-
tion, �0 is a vacuum permittivity and � is relative permittivity
of the material. A Fourier transform with respect to z yields
the linear stochastic differential equation
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FIG. 3. �Color online� �a� Numerical simulation of the electro-
static potential for an elongated quantum dot. �b� Energy spectra of
the QD shown in part �a�. �c� Probability to find a QD whose cross-
section in the �x ,y� plane is approximated by an ellipse with axis
ratio �2 /�1 ��2��1�.
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FIG. 4. �Color online� Numerical simulation of the electrostatic
potential created by �a� a uniform “slab” and �b� a � layer distribu-
tion of Mni donors. Parts �c� and �d� represent corresponding energy
spectra of electrons confined in the potential minima.
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�2
�r,kz�
�r2 − kz

2
�r,kz� = −
q

4���0
�r� , �3�

which describes a stochastic process ��r ,kz�, whose station-
ary autocorrelation function is R�r� ,kz�= 
�
�r−r� ,kz�
− 

�r ,kz����
�r ,kz�− 

�r ,kz�����exp�−kzr��. Here kz is the
spatial frequency along z and 
 · � means averaging over the
ensemble. One can formally introduce a correlation length rc
of the potential, which represents the distance r� at which
R�r� ,kz� becomes e times smaller than its maximal value at
r�=0, i.e., rc=1 /kz. Thus, at distances z=d�1 /kz from the
plane of charges at z=0, the potential has a longer correlation
length across the �x ,y� plane. In other words, Eq. �3� filters
only large-scale fluctuations with higher spatial frequency.
This conclusion is confirmed by the numerical simulation of

�r ,z� in Fig. 5�a�, which shows that as d increases the po-
tential becomes smoother.

To estimate the amplitude of the random fluctuations of
the potential at a given distance, z, we assume that the
charged particles are distributed homogeneously across the
plane. The probability of finding a particle in a cell is
p=n /N and the mean value of the potential created by a
single cell is 
�1�= p�1, where �1=q�4���0

�z2+r2�−1 is the
potential generated by an individual charge at a distance
�z2+r2. The corresponding mean-square deviation is �1

2

= 
��1− 
�1��2�= p�1
2. For a cell of size a, the number of cells

between r and �r+dr� is dN=2�rdr /a2. By integrating dN
over all cells in the plane, we derive the mean-square fluc-
tuation of the total potential

�2 = �
0

R

p�1
22�rdr

a2 =
pq2

8��a��0�2 ln�1 +
R2

z2 � , �4�

where R is the radius of the mesa. Equation �4� shows that
the amplitude of the potential fluctuations goes to zero as z
tends to infinity, as confirmed by our numerical simulations.

To understand qualitatively how a deep confining poten-
tial can be created, we consider a small number, n, of closely
spaced positive electrical charges, q, placed at a small dis-
tance d above the origin of the �x ,y� plane. The charges give
rise to a confining potential U�x ,y�=−U0 / �1+r2 /d2�1/2,
where U0=nqe / �4��0�d� and r2=x2+y2. Since the potential
is approximately parabolic close to its minimum, i.e.,

U�x ,y��−U0�1−r2 /2d2� �see also Fig. 5�b��, the low-lying
two-dimensional eigenstates are simple harmonic-like, with
an energy separation of ��U0 /m�d2�1/2 and characteristic
length scale, �0, given by �0

2=d / �� /m�U0�1/2, where m� is the
electron effective mass. Hence the depth and characteristic
energy level spacing are determined by two parameters, n
and d. If we assume that the potential can be approximated
by a parabola up to an energy of 	U0 /2, then the K lowest
energy levels will approximate to those of an harmonic os-
cillator. Here K= � 1

2
d
�
�meU0�I, where � · �I is the nearest inte-

ger function. Since U0�1 /d, K��d. For a nanocluster of 7
Mni ions placed at a distance d=18 nm, K=3, l0=20 nm,
and the principal level spacing is ��0=18 meV, in good
agreement with the numerical results shown in Fig. 4 and the
experimental data described below. Note that the spectrum of
quantum-confined states of a potential minimum formed by a
small cluster of donor ions outside the QW is quite different
from those arising from � doping with ionized donors in the
plane of the QW. In the latter case, only the ground states of
isolated 2D hydrogenic donors23 and of “donor molecules”24

can be observed by magnetotunneling spectroscopy; excited
states are too close to the continuum to be resolved.

IV. EXPERIMENT AND DISCUSSION

We now consider the practical realization and electronic
properties of nanoelectrostatic QDs and how the properties
can be “tuned” in appropriately designed heterostructures.
For these studies, we use the p-i-n RTD structures described
in Sec. II. The p-i-n layers were grown by molecular-beam
epitaxy and processed into circular mesas of diameter D
=200 �m. By controlled annealing �TA=150–200 °C and
tA=2–3 h�, Mn interstitials ions were diffused out of the
�GaMn�As layer into an adjacent layer of undoped GaAs.
This creates a layer of randomly distributed, positively
charged Mni

2+ donors spatially separated from the �GaMn�As
layer—as shown schematically in Fig. 1�d�. The low-
temperature �T=4.2 K� current-voltage characteristics, I�V�,
of two separate mesa diodes are shown in Figs. 6�a� and 6�b�.
They both reveal sharp resonant peaks at applied voltages
below the flat band condition. The resonances arise from
electron tunneling from the n-type GaAs emitter into discrete
QD states.

To probe the strength and symmetry of the QD confine-
ment potential, we now examine the magnetotunneling spec-
tra of these two mesas. Figures 6�c� and 6�d� shows gray
scale plots of the intensity of the differential conductance
dI /dV as a function of V and magnetic fields B �up to
�30 T� applied perpendicular to the plane of the QW. The
dominant lines in each spectrum reveal a magnetic field de-
pendence characteristic for the ground and excited states of a
single quantum dot. For both gray scale plots, the lowest bias
resonance reveals no Zeeman splitting, but a clear diamag-
netic shift consistent with a ground-state orbital. We refer to
the dots giving rise to the spectra in Figs. 6�a�–6�d� as QD1
and QD2, respectively. A striking difference between the two
QDs is that the excited states of QD1 show a strong orbital
Zeeman splitting, ���c, remarkably similar to that of the
Fock-Darwin model for a QD with circular symmetry18 and
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FIG. 5. �Color online� �a� Electrostatic potential profile along x
for d=0.5, 1, 2, 4, 10, 15, 20, 30, 40, and 60 nm. For clarity the
curves are shifted along the vertical axis. The thicker line, corre-
sponding to d=15 nm, is shown in part �b� together with a para-
bolic fit around the minimum.
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quantization energy ��0�20 meV. However, the small
splitting at B=0 of the first two excited states �2px,y-like� in
Fig. 6�c� indicates that QD1 does not have precise circular
symmetry. A similar spectrum of levels is shown in Fig. 2�d�
for a typical QD obtained in our simulation. In contrast, for
QD2, we observe a series of four approximately equally
spaced low-lying energy levels with no clear orbital Zeeman
splitting. Their magnetic field dependence resembles that of
one of the QDs found in our simulation, see Figs. 3�a� and
3�b�, and reported for elongated QDs �Ref. 20� and wires25

produced by submicron lithography. For the simulation pre-
sented in Figs. 3�a� and 3�b�, the lowest energy states are
equally separated by ��0�20 meV, which is the quantiza-
tion energy for electron motion along the direction of weak
confinement. We have measured the magnetotunneling spec-
tra of 20 samples with quantum dots. Most of these dots have
energy spectra similar to the Fock-Darwin model, thus indi-
cating an approximately circular symmetric potential. Only
two of the measured samples have energy spectra that indi-
cate large deviations from circular symmetry. Figures 6�c�
and 6�d� represent, respectively, these two types of behavior.
Our observations are consistent with our statistical analysis
of the shapes of the quantum dots generated by the random
diffusion of Mn interstitials, see Fig. 3�c�.

The good agreement between the analytical model, statis-
tical and numerical analyses, and experimental results ob-
tained in our �GaMn�As-based RTDs suggests that similar
QD-like potentials could be created in other material systems
and device structures. We have observed similar, though
weaker, resonances in I�V� curves of a second series of p-i-n
QW RTDs. The molecular-beam epitaxy-grown epilayer,

from which the diodes were produced, contained no Mn be-
tween the carbon-doped p GaAs and the QW, but a 10 nm
layer of Si donors ��5�1018 cm−3�, which was intention-
ally introduced in the GaAs spacer layer at a distance of 15
nm from the central QW �x ,y� plane. In these structures, the
randomly distributed positive charges of the ionized substi-
tutional Si+ donors create a fluctuating potential with QD-
like potential minima. These tend to be shallower than in the
case of Mn-based structures due to the single positive �rather
than double in Mni� charge of the Si ions.

We conclude this section by relating our results to some
interesting reports of QD-like energy levels observed in de-
vice structures containing unintentional dopants or regions
doped with Si dopants.13–15 These papers have reported the
observation of QDs with large ��10 meV� confinement en-
ergies. These have been attributed to “growth-induced”
effects13,14 or “fluctuations in the Si-donor concentration.”15

The magnetotunneling spectra presented in these papers re-
semble that of the Fock-Darwin model but with symmetry
lowered by some unknown mechanism, possibly an ionized
acceptor positioned at small distance away from the mini-
mum of the approximately parabolic confinement potential.
Our simulations confirm that the random character of the
Coulomb potential generated by ionized impurities can in-
deed lead to deep, approximately parabolic and sometimes
anisotropic confining potential minima. Such impurities can
be intentionally introduced, as in our case, or exist in nomi-
nally undoped regions or at the interface of intentionally
doped layers.

V. CONCLUSIONS

In conclusion, we have shown that randomly distributed
charges placed close to a QW can produce deep and strongly
confined quantum-dot-like potential minima with a rich spec-
trum of zero-dimensional energy levels. Since the potential is
approximately parabolic close to its minima, the low-lying
two-dimensional eigenstates are simple harmoniclike, with
an energy separation and characteristic length scale deter-
mined by the number of charges and their distance from the
well. Most of the deep potential minima have approximately
circular symmetry, but a small number are significantly elon-
gated to quench the orbital angular momentum. The high
thermal diffusivity of ionized interstitial impurities such as
doubly ionized manganese interstitial donors, Mni

2+, in
GaAs, provides a means of realizing this type of nanoelec-
trostatic QD by controlled thermal annealing of appropriately
designed heterostructures. On the other hand our calculations
indicate that a similar result could be obtained for any ran-
dom distribution of charges close to a QW.
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